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1. Introduction

In modern usage, the word marble has a very wide
range of meanings and is often used to refer to any of
those rocks, regardless of origin, usually employed in
the building industry for pavements or coverings. The
present paper deals with marble as defined in its strict
sensc: the quasi-monomineral metamorphic rock made
up of an aggregate of calcite (calcium carbonate) crys-
tal granules. The varieties of marble are distinguished,
rather than by appreciable differences in mineral com-
position, by the mosaic texture of their constituent
grains, which may range between the two extreme
cases termed “hontoblastic™™ and “*xenoblastic™, schema-
tically represented in Fig. 1. The first is composed of
regular-shaped grains with straight or gently curving
boundaries. such as the Pentelic marble used by the
Athenians to build the Parthenon. The second,
peculiar to somc varicties quarried in Carrara, 1s
characterized by the interlacing of irregular crystals
closely fitting along their wavy contours.

The degradation of marble, clearly cvident in many
historical monuments, typically consists of the pro-
gressive loosening of rock cohesion and manifests itself
by increased porosity and a tendency to crumble.
Among the many possible causes of marblc decay. an
important role is played by temperature changes,
hence the term “marmo cotto™ (i.e. “baked marble™)
used for centuries by quarrymen in Carrara to denote
any marble presenting poor mechanical properties.
This same term was introduced into the scientific lit-
erature by Lord Rayleigh [6]. who was ablc to repro-
duce the various stages of degradation by heating
marble repeatedly in an oven.

At the microscopic level, an evident (and somewhat
surprising) effect of temperature changes, even it uni-
formly distributed throughout the body. is dctachment
of the calcite grains one from the other. As shown in
the scanning electron micrograph of Fig. 2, the grains
remain integral after thermal treatment and it simply

appears as if the cementing material between them has
been degraded. Experimental observations have shown
that a temperature increase of just 20- 30°C is sufficient
to produce partial decohesion of calcite grains [l],
which causes the opening of micro-voids and macro-
scopically results in permanent expansion of the rock.
About ten thermal cycles between 20 and 500 C are
sufficient. to reduce the material to a mono-crystalline
powder of integral calcite grains [3.4]. Mechanical
actions (i.e. uniform tension or bending) are instead
likely to produce intragranular separation, revealed by
the sparkling and facetted appearance of the fracture
surfaces, which typically results when rupture of the
crystals occurs along cleavage planes [3].

Any satisfactory explanation of these phenomena
should include consideration of the material’s polycrys-
talline microstructure. Calcite is known to expand on
heating much more in the direction of its optical axis
than perpendicular to it [7]. The grains’ shapes change
with temperature and a grain which fits snugly into the
mosaic at a4 given temperature is no longer able to do
so when the temperature is varied; this is because the
anisotropy directions of individual grains are oricnted
randomly. The result is a springing apart of contiguous
grains, giving rise to a non-zero residual stress state
inside the material. On the other hand. when mechan-
ical actions are applied. the sparkling and facetted
appearance of the fracture surfaces reveal that the key
role is now played by the resistance of the crystals. In
fact. although applied forces change grain shapes in
the same way as thermal actions (because calcite is
also elastically anisotropic). it takes very high stress
levels to produce the same strains consequent to just a
few degrzes’ temperature increase [10].

The main aim of the present study is to explain why
thermal actions tend to favor decohesion rather than
cleavage fracture of single crystals. To this end. the
first step is to define and quantify the true stress state
that a uniform temperature increase produces both
inside the single grains and at their interface. Then. a
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further question to be addressed is how marble texture
and grain shape might influence the baking phenom-
cnon.

Despite the complexity of the processes involved. a
first attempt at qualitative description can be achieved
by means of the following model. which takes an aver-
aged view of the phenomena due to the anisotropy of
calcite grains and discrepancies in their orientation.
Marble is conceived of as an aggregate of grains com-
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Fig. |. Typical homoblastic (a) and xenoblastic (b) textures in two different qualities of marble.

posed of two elastic phascs, both of which (i) are ther-
mally and elastically homogeneous and isotropic; (ii)
have cqual elastic moduli: (iii) break at the samc stress
level according to a common failure criterion; (iv) have
different cocflicients of thermal expansion. A number
of approximations have been introduced here. It is
clear that, in (i) and (iv). interactions among grains are
interpreted by assuming different isotropic thermal
expansion coefficients for grains in contact. Sccondly,
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Fig. 2. Scunning clectron micrograph of marble having undergone
therowed s,

in (ii) the anisotropy of the elastic response is con-
siddered 10 'pe 2 secondary ey, Finahy. HinouEn I
makes no explicit hypothesis regarding the cementing
material between the grains. it is implicit that it must
be at lcast as strong as calcite. It is then clear that
intergranular adhesion does not influence the overall
response. because failure. if’ any, would occur in the
calcite particles nearest to interfaces, rather than in the
thin contact layer between grains,

2. The microstructural model

Fig. 3 offers two cxamples of grain textures formed
by assembling two alternating phases. In Fig. 3(a) the
two phases. "« and b, are represented by square
graris of side ¢ arramged as in a chessboard, “a™ occu-
pying the white squares and “h" the black ones.
Another possibility is drawn in Fig. 3(b). where the
texture is compound of cquilateral triangles. each of
the sides shared between grains being made up of
different phases.

Let us consider a panel of thickness 7 and diameter
D for which we assume D >> /> 1. We refer the body
to a Cartesian coordinate system with the x and y axes
placed in the middle plane of the panel and the = axis
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Fig. 3. Examples of grain textures considered by the analysis.
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perpendicular to this plane. Since the panel is thin, we
consider a “generalized™ plane stress (Ref. [9], art. 8)
and the generalized stress components will be unam-
biguously denoted by o.,. g,, and 1,,. Moreover, u
and «, indicate the generalized displacements in the v
and 1 dircctions, respectively, and (. ¢, and
(v=Y., the generalized strains. Let £ and v be
Young's modulus and Poisson’s ratio of both materials
and =, and =, the coefficients of thermal expansion for
materials "« and “4", respectively. In the absence of
body forces and boundary tractions. we aim to find
the state of stress due to a uniform temperature
increase Ar.

Since zach of the grains stretches differently from
the others. it is clear that, aside from undergoing a
macroscopic dilatation, the body will experience an in-
weriad, stif-equitibrated state of stress. {1 will be shown
that if D > /. the complete solution of the elastic pro-
blem is the sum of two contributions. The first is given
Wy 2 DPLILNIDIN SITESS SNDE. PALLLWIASE LONRSIDY 20 INC
panel, yet constant in cach grain, of the form

E At E A(o, + %)
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Oxx =0 = —
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where a(x, v) = a, [or a(x, y) = %] at points occupied
by material "¢ (or “h"). The second is the state
obtainable by considering the elastic solution corre-
sponding to the problems in Fig. 4(a) [Fig. 4(b)] in
cach “¢” (*b™") grain. These arc characterized by the
mixed boundary conditions: on the grain edges the
normal component p of the boundary tractions and

P
(a) (b)

Fig. 4. The reduced schemes for the “*periodic additional state™ con-
figuration.
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the tangential component of displacement are assigned.
In particular,

s EA’(‘IU_ah)
r= 2(1 — v)

and the tangential displacement is equal to zero. as
represented by the constraints in Fig. 4. Clearly, the
difference in the boundary conditions for “«™ and “h"
grains consists solely of the sign of the boundary trac-
tions. Note also that when %,= 2. the model confirms
the intuitive expectation that thermal actions do not
cause internal stress.

As proof of the previous statement, let us denote as
the fundamental state the hypothetical state in which
the interfaces between grains, as well as the outer
boundary of the panel. are prevented from moving by
fictitious restraints as the temperature is raised. In this
case. the whole body is clearly in a hydrostatic state of
stress. constant piecewise, of the form

E A
Tyy = 0y = — 'l_:"' x(.x, ,")~ Ty = 0, (3)

where the function x(x, v) has been dcefined in Eq. (1).
The complete elastic solution can then be obtained by
superimposing onto the fundamental solution an ad-
ditional statc of stress consequent to application of
forces equal to. but opposite in sign of those exerted
by the fictitious constraints. Thus, in the additional
state, the body will be subjected to forces per unit arca
/. uniformly distributed along the grain interfaces
(Fig. 5), of the form

o EAr (o, —ap)
[=——n.

] —v

(4)

where n denotes the unit normal to the interface point-
ing from material “«” towards material *5". The outer
boundary. instead. will be subjected to the tractions
given by

EAra(x, v)
L J— % n*‘ 5
T 5)
with n* the outward unit normal to the reference
domain of the body and, once again, a(x. 1) = 2, or
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Fig. 5. The additional state configuration.

F=

==

a(x. v) = . depending on whether the boundary par-
ticles belong to grain type ““¢”" or “h".

It is convenient to think of the forces in Eq. (5) as
being composed of two parts: the “average™ part,
given by

T é At (9(11 + ah)
2(1 =)

n*, (6)

and what will be called the “serrated™ part, of the
form

hix.) M——dl,)

30— n*, (7)

where /(x. 1) = 2 in type "« grains and A(x, v) =1
in type “h™. Clearly. the contribution made by Eq. (6)
is a hydrostatic stress state of the form

E A1 (%, + xh)

e Bl (8)

Oxy =Tpp =0 =
The contribution of Eq. (1) is thus to be interpreted as
the sum of Eqgs. (3) and (8).

Consider now the remaining part of the “additional
state™, in which grain interfaces are subjected to the
forces per unit area f. given by Eq. (4) and tractions f*
of the form as shown in Eq. (7), acting on the bound-
ary of the body. This condition will be referred to as
the “periodic additional state™. It may be tentatively
assumed that a representative aggregate of grains suffi-
ciently far from the external boundary can be thought
of as part of an infinite body. In the case of an infinite
body. the interface lines between grains can be con-
sidered to be axes of geometrical symmetry. Since ther-
mal actions arc not involved in the problem in Fig. 5.
the inerface lines arc also axes of mechanical sym-
metry because the elastic properties of the grains are
the same: the load condition, however, is antisym-
metric with respect to the same axes. Thus, points on
the interface lincs will move only in the direction of
the normal n (no tangential displacement component is
allowed). while f. given by Eq. (4). can be thought of
as divided into two cqual parts, one acting on type
“«" grains and the other on type “h". Consequently,
the stress states in the "« and “h" grains can be cal-
culated by referring to the reduced schemes in Fig. 4(a)
and (b), with p = ||/]|/2.

Examine now the implications of considering the
solution to the problems in Fig. 4 as an approximation
for the “*periodic additional state™ in the marble panel.
It is clear that the solution will be kinematically com-
patible throughout the body becausc deformations of
the “« grains will fit with those of the A" grains, like
in a mosaic. Equilibrium will be respected in the in-
terior grains because the normal tractions p will be
provided by the interface forces f given by Eq. (4).
while the shear forces due to the reactions of the trans-
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Fig. 6. Examples of conncctions between the clastic wedges.

3. The stress state at the grain corners

In order to evaluate the state of stress around the
grain corners, we imagine magnifying a small region
around a texture node in Fig. 3(a) [Fig. 3(b)]. Now the
effect of a uniform temperature increase can be
regarded as acting in an infinite body composed of
four (six) clastic wedges. two (three) made of material
“« and two (three) of material “*h™, joined together as
shown in Fig. 6(a) [Fig. 6(b)]. In gencral, we will
examine the case of connections among, say. n identi-
cal wedges of material “«™ and the corresponding “n”
wedges of A", arranged alternately as shown in
Fig. 6(a). (b) and (c) for n = 2, 3 and 4, respectively.

It is again possible to show that complete solution
of the clastic problem relative to the schemes in Fig. 6
is given by the sum of the piecewisc-constant hydro-
static stress state
FEA: Ao E At (2, + o)

sl (12)

Oy =0y = —

7y = 0.

formally identical to Eq. (1) and that static state
obtained by considering problems like those in Fig. 8.
with

_ EAt (2, — %)

i 21 —v) ()

In fact. consider, as before, the fundamental state,
characterized by the action of fictitious constraints act-
ing along the interfaces between the wedges and at in-
finity. The stress state corresponding to this situation
is clearly given once again by expressions of the form
as shown in Eq. (3). In the additional state the reac-
tions of the fictitious constraints are applicd with their
signs reversed. Thus. in this second case the straight
interfaces between the wedges will be subjected to
forces per unit arca given by Eq. (4). while at infinity
the wedges will be stretched by the tractions

_ EAra(y, y)

> n¥, (14)

/*
where n* now denotes the outward unit normal to a
large circle centered at the vertex of the wedges and
a(x. v) has already been defined in Eq. (1).

F=

fr=(=1

As before, it is convenient to decompose the trac-
tions in Eq. (14) into their “average™ and “‘serrated”
parts, respectively, given by
—  EAt(a, +ap)

21 —v)

n*,

By E At (ot _L/")
201 —v)

where i(x. v) = 2 [h(x. ») = 1] at points occupied by
material “« (h7). The “average™ part contributes
with a hydrostatic stress state still of the form as
shown in Eq. (8). Summing up the two contributions
given by Egs. (3) and (8). we once again obtain
Eqg. (12).

The action of the *“serrated” boundary tractions
(2nd part of Eq. (15)) and of the interface forces
(Eq. (4) will define what has already been called the
“periodic additional stare”. This condition is schemati-
cally reoresented in Fig. 7. where

EAt (%, — 2p) EAr (2, — 2p)

I— qz—**m- (16)

qy =

By virtue of symmetry, the problem in Fig. 7 can be
reduced to that illustrated in Fig. 8. This represents an
infinite elastic wedge defined by the lines v = 0 and
1 = xtan 8, subjected to mixed-type boundary con-
ditions on the straight cdges: the normal tractions are
prescribed to be equal to p and no radial displacement
components are allowed. In particular,

p=q/2. (17)

From Egs. (16) and (17). then Eq. (13) follows.
Solutions to the problems in Fig. 8 that satisfy the
boundary conditions on the straight cdges can be
found in explicit form. Introducing a Cartesian coordi-
nate system such that the v axis coincides with onc of
the straight edges and the wedge lies on the half plane
+>0. we first consider the problem illustrated in
Fig. 8(a). It can be verified that the constant state of

Fig. 7. The “periodic additional state™ configuration.
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Fig. 8 The reduced scheme for

stress

F (X, ¥) = vp. Oy(X0 1) =P

| —v (18)
Tyl P = ——z—ptan fi

implies vanishing of the radial displacement along the
wedge edges, as well as continuity of the normal trac-
tions with the prescribed value p. provided that
0<f<m2.

But for f§ = =/2, we have another stress state. com-
pletely different from Eq. (18). of the form

1 —v)

2 v
Gy, 1)y =plv+ arctan; :
21 =v

¥
—————arcmn‘—]. (19)
n X

g (X)) = p[l —

5

] —v A i

Tl ) =——pIn——m—m-.
TL’ Vs

where 7 is a constant having the dimension of a length.
It is also simple to verify that the boundary conditions
for the problem of the right-angled sector are satisfied
by Eq. (19). whatever the value of 2. This is an unde-
termined parameter to be corrclated with a stress state
of the form a,,=a,.=0, 7,,=constant = K| to which
correspond the strains &, =6, =0, 3. =constant =
KiG and a displaccment field of the type (i 1)
=/2G(y, x). compatible with the displacement
constraints on the straight wedges.

Thus. there is a remarkable difference between the
cases fi = m/n, with n# 2 and fi n/2. Let us consider
the contribution in Eg. (12) and define a parameter h.
such that # = 1 (h = 2) for wedges made ol material
“« (*h"). Then. from Egs. (13). (18) and (19). the
complete stress state becomes

f EA’(“H = 9(/,)
A5 .

a(x, .") = (- I) (71‘,1'(»\'~ _\') 0,

(20)

h EAI(C],,, - 1/!)

¥
o)y =(=1) tan va
1

when the connection is among more than four wedges

125
the “additional state™ configuration.
(n>2)and
E At (2, — %) 2 Vv
alX, 1) = (—l)” ————,,—'———- 1 — —arctan= |},
2 n AN
EAt (2, — %) %
aop(v, 1) = (=)' ———F——-arctan—. (21)
X
EAl (%, —2p), N> 417
Tyly, 1) = =1y 7" . n——s—=
] I i

when n = 2 (ff = n/2).

Therefore, the theory predicts constant and finite
stress i1 the wedges. with a stress state that is more
favorakle the sharper the angle of the corner is and, as
the limit case, stress singularities for thosc textures
where the grains are squarc-shaped.

Instead of thin panels, we could as well consider
marble specimens composed of long. prismatic calcite
grains under plane strain (Ref. [9]. art. 8) that present
the same cross-section as the previous case. The corre-
sponding state of stress can now be obtained through
expressions similar to those above. i.c. Eqgs. (20) and
(21), by substituting E/(1 — \':) for E and (! + v)a, or
(1 + v)z, for x, or a, respectively. Specifically there-
fore, the components of stress oy G Ty result
[/(1 —1) times greater than the quantitics correspond-
ing to thc planc-stress case, with an increment  of
aboul 20% for the appropriate valucs of Poisson’s
ratio.

4. Concluding remarks

The model presented here can be used to interpret
some important aspects of marble behavior. Since the
two-phasc material is elastically homogeneous and iso-
tropic. any kind of mechanical action. for example
threc-point bending, would produce a clearly identifi-
able state of stress and. since the marble specimen
must bz considercd homogencous also with regard to
failure. the material would break at those points where
the limit strength is reached, independent of the grain
texture. This explains the cleavage fractures commonly
observed in mechanical tests.
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A peculiarity of thermal actions is that they produce
self-equilibrated stress states which are the most
dangerous preciscly in those particles located at grain
interfaces. It is at these points that fractures will most
likely initiate and propagate. Thermal actions. there-
fore, more often produce decohesion rather than the
cleavage fracture of the constituent calcite grains.

Moreover, the problem discussed in Section 3 can
clarify how baking is influenced by grain texture. As
the angle f# = m/n varies [rom very small values to /2.
the connection among the grain apices results more
like the homoblastic than the xcnoblastic pattern.
Xenoblastic textures are, in fact, characterized by
sharp corners and deep interlacing of the calcite grains,
while the regular homoblastic texturcs resemble more
closely the chessboard arrangement. Therefore, from
the theory it can be conjectured that marble with xeno-
blastic texture is more resistant (o baking than the
homoblastic varieties. Such theoretical predictions aris-
ing from the model have, in fact, been confirmed by
experimental trials (see Franzini ef al. [3--5]).

The current state of many historical monuments
clearly reveals that they are not immune to the “bak-
ing” action of daily or seasonal tecmperature changes.
The question therefore arises whether certain types of
marble are better suited to the maintenance, restor-
ation and construction of such structures. In con-
clusion, this study suggests. albeit tentatively, that
grain texture and. in particular, the average sharpness
of the calcite ridges, may be the major qualifying
characteristic for sclecting marbles able to endure over
the years.
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